Saturday, 28 October 2017

Python forex em tempo real


Estou programando no Python. Gostaria de extrair dados em tempo real de uma página web sem atualizá-lo. Fxstreetrates-chartscurrency-rates Eu acho que a página de dados em tempo real está escrita em AJAX, mas não tenho certeza. Eu pensei em abrir um navegador de internet com o programa, mas eu realmente não gosto desta maneira. Existe outra maneira de fazê-lo. Eu gostaria de preencher um dicionário no meu programa (ou mesmo um banco de dados SQL) com os números mais recentes por segundo. Por favor, ajude-me em python, obrigado perguntou 9 de agosto 11 às 6: 52Python Algorithmic Trading Library PyAlgoTrade é uma Python Algorithmic Trading Library com foco em backtesting e suporte para papel-trading e live-trading. Digamos que você tenha uma idéia de uma estratégia comercial e que gostaria de avaliá-la com dados históricos e ver como ela se comporta. PyAlgoTrade permite que você faça isso com um esforço mínimo. Principais características Totalmente documentado. Evento conduzido. Suporta pedidos de Mercado, Limite, Parada e StopLimit. Suporta os arquivos do Yahoo Finance, Google Finance e NinjaTrader CSV. Suporta qualquer tipo de dados de séries temporais no formato CSV, por exemplo, Quandl. Suporte comercial Bitcoin através do Bitstamp. Indicadores técnicos e filtros como SMA, WMA, EMA, RSI, Bandas Bollinger, Expositores Hurst e outros. Métricas de desempenho como a taxa de Sharpe e análise de redução. Manipulação de eventos no Twitter em tempo real. Perfil de eventos. Integração TA-Lib. Muito fácil de dimensionar horizontalmente, ou seja, usando um ou mais computadores para testar uma estratégia. PyAlgoTrade é livre, de código aberto, e está licenciado sob a Licença Apache, Versão 2.0.Learn Quant habilidades Se você é um comerciante ou um investidor e gostaria de adquirir um conjunto de habilidades de negociação quantitativa, você está no lugar certo. O curso Trading With Python proporcionará as melhores ferramentas e práticas para pesquisa de negociação quantitativa, incluindo funções e scripts escritos por comerciantes quantitativos especializados. O curso dá-lhe o máximo impacto para o seu tempo investido e dinheiro. Ele se concentra na aplicação prática da programação ao comércio e não à informática teórica. O curso irá pagar por si mesmo rapidamente, economizando tempo no processamento manual de dados. Você passará mais tempo pesquisando sua estratégia e implementando negócios lucrativos. Visão geral do curso Parte 1: princípios Você aprenderá por que o Python é uma ferramenta ideal para negociação quantitativa. Começaremos pela criação de um ambiente de desenvolvimento e, em seguida, apresentaremos as bibliotecas científicas. Parte 2: Manipulação dos dados Saiba como obter dados de várias fontes gratuitas, como Yahoo Finance, CBOE e outros sites. Leia e escreva vários formatos de dados, incluindo arquivos CSV e Excel. Parte 3: estratégias de pesquisa Aprenda a calcular PL e as métricas de desempenho acompanhantes, como Sharpe e Drawdown. Desenvolva uma estratégia de negociação e otimize seu desempenho. Múltiplos exemplos de estratégias são discutidos nesta parte. Parte 4: Iniciando esta parte é centrada em torno da Interactive Brokers API. Você aprenderá como obter dados em estoque em tempo real e colocar ordens ao vivo. Muitos códigos de exemplo O material do curso consiste de cadernos que contêm texto juntamente com um código interativo como este. Você poderá aprender interagindo com o código e modificando-o para seu próprio gosto. Será um ótimo ponto de partida para escrever suas próprias estratégias. Enquanto alguns tópicos são explicados com grande detalhe para ajudá-lo a entender os conceitos subjacentes, na maioria dos casos, você nem precisa escrever seu próprio código de baixo nível, devido ao suporte de abertura existente Bibliotecas de fontes. A biblioteca TradingWithPython combina grande parte das funcionalidades discutidas neste curso como funções prontas a usar e serão usadas ao longo do curso. Pandas irá fornecer-lhe todo o poder de levantamento pesado necessário no trituração de dados. Todo o código é fornecido sob a licença BSD, permitindo seu uso em aplicações comerciais Classificação do curso Um piloto do curso foi realizado na primavera de 2017, é o que os alunos conseguiram dizer: Matej curso bem projetado e bom treinador. Definitivamente valeu o preço e meu tempo, Lave Jev, obviamente, conhecia suas coisas. A profundidade de cobertura foi perfeita. Se Jev executar algo assim novamente, eu vou ser o primeiro a se inscrever. John Phillips Seu curso realmente me fez começar a pensar em python para a análise do sistema de estoque.

No comments:

Post a Comment